
[image: image1.png]



ICDB IN A NUTSHELL

I.
API’s& Development

A. See the “Develop” section on our website for ASP and Oracle Package API’s ( http://icdb.tricaresw.af.mil )

1. These API’s are existing functionality you can take advantage of to speed development of your own applications

B.
Independent development

1.
Whenever possible use your own database schema for independent/custom applications

a.
By keeping a compartmentalized structure it is easier to merge your code in and submit for inclusion

i.
Making a seperate virtual directory for seperate ASP pages is the best way of keeping that application distinct from ICDB

ii.
Core pages that need to have code added should be built to detect whether or not that application exists before executing, either in the database or by detecting vbscript / javascript values.  That way facilities who determine not to implement your application for whatever reason will not get errors or unexpected behavior.

2.
Submit your own applications for inclusion in the ICDB

a.
Advantages: 

i.
You won’t have to merge & debug your own code in every time you upgrade ICDB (BIG timesaver)

ii.
Will gain recognition and respect for contributing to an integrated health system interface- we do keep team branding on introduced applications

iii.
Adds momentum to the ICDB application so everybody is encouraged to contribute, and therefore everybody gets more value for each dollar spent

3.
When submitting please state clearly a few things:

a.
General purpose / value of your app- why other might want to use it and why we should want to integrate it

b.
Clearly delimited & documented code- so we can merge it in quickly and with little confusion

c.
How the code fails gracefully if certain parts of the application are not present on bases where they determine not to install it

d.
Testing parameters & procedures- how can we determine that it works once we have implemented it?

II.
Oracle Packages / Procedures

A. These could be considered the heart and soul of the ICDB as it is a database driven app

1.
By keeping all SQL in the database we gain several advantages:

a.
Easily compiled and tested, allowing up us to quickly find bugs, missing / misnamed objects

b.
Makes upgrades easier since we can document the differences between each package / procedure version

c.
Keeps the ICDB closely tied to the N-tier application model where the SQL is stored securely on the innermost level (on Oracle) where it can be accessed most quickly by the database

d.
Not subject to query length constraints

III.
XML/XSL

A. How transformXML works

1.
Include transformXML.js file, this has functions that overlay the XML with the XSL and transmits data to the designated portion of the page

2.
Construct of function call is:

a.
transformXML(‘Location of ASP page that calls package’, ‘Location of XSL page’, DIV tag ID);

i.
‘Location of ASP page that calls package’ is where the Package.Procedure is referenced along with parameters, these are located in the ‘lib/xml’ directory

ii.
‘Location of XSL page’ is where the XSL page that transforms the returned XML from the above page get transformed into browser HTML / DOM elements

iii.
‘DIV tag ID’ is the DIV tag where the transformed data manifests itself on the calling page

b.
Dozens of examples of this method are throughout the ICDB as this is our primary data presentation method, just look around in the ASP for the transformXML javascript function

3.
Common errors

a.
Did you include the transformXML.js file?

b.
is the path correct for XML / XSL files?

IV.
Oracle Reports

A. These are the primary device of generating printable standard forms for the 2766 and Screening Exams

1.
We use Oracle Reports Builder 6i to create the forms and Oracle Reports Server 9iAS to serve them

2.
Originally scanned in forms, and used Reports Builder to add data elements that interface with database packages and cursor types to return formatted data

3.
Recommend you get training or experienced personnel for any changes / modifications to these

V.
How to Debug

A.
When building a new application, best practice is to code a simple working version first, then build elaboration into it with constant testing

B.
Test database package / procedures first

1.
Core of ICDB is the database stored SQL, so be absolutely positive your package / procedure works as expected

2.
If you are having trouble distinguishing why a package / procedure has an error, strip out just your SQL and make sure that runs as a raw query

3.
Use exceptions often so you can squash simple errors such as no data returned, logged out user, etc.

C.
Construct URL to ASP page in XML directory with proper parameters to see if XML is returned in browser.  If not, you have narrowed the scope of the problem to that lib/xml .asp page

D.
If there still is murkiness about where the problem lies, compare your pages with other pages that work.  A diff program is excellent for this

E.
Common Errors

1.
In the /XML/.asp page make sure the parameters sent to Oracle package are EXACTLY the same type and in EXACTLY the same order as the package header is defined.  Names don’t matter, but they are helpful if they match.

2.
Make sure you are pointed to the right database, schema, package

3.
If it is an Oracle Reports problem make sure the cursor defined in the package header maps exactly to the data types you are returning

VI.
Future of ICDB

A.
Future Integration

1.
We are currently implementing a beta of Sentillion CCOWS, which works on all platforms, so we can still use it when we change platforms

a.
This allows us to have single sign-on capability using ICDB/CHCS authentication as the primary login

b.
Will allow us to easily tie together an infinite amount of client applications that also have the CCOWS event detectors

B.
Future platforms - Not determined yet, but a good possibility is it will be Oracle 9iAS

1.
9iAS will export XML & apply XSL, eliminating need for development (and subsequent debugging) of pages in XML / XSL directories

2.
ASP will be converted to JSP, so much of the page code will remain the same or at least similar

2.
9iAS is also the platform of Tricare Online whom we may be sharing architecture / network with

3.
Also web service friendly, which means if you want to make .NET applications these can still interoperate with the common XML language wrapper for data

4.
There has been some planning and experimentation of regional portals

a.
Would allow administrators to see and run queries on “the big picture” such as regional ROI, regional medical trends, disease vectors, etc.

b.
Would allow us to consolidate entire regions to a single set of servers, bringing cost of ICDB down

c.
Would make it easier to administer patient healthcare for people who move around a lot

_1106735799.psd

