Integrated Clinical Database 2.0

[image: image1.png]‘My Schedule’ Tutorial on the ICDB 2.0 platform

Let’s get started with an example. This example provides to you the developer a basic understanding of how to work within the ICDB 2.0 portal platform. The following tutorial demonstrates a simple functionality that displays a panel of patients who have been identified as scheduled to have an appointment with the ICDB user for toady.
WARNING: The SQL presented in this tutorial is not optimized for data retrieval but is provided as a straightforward presentation of logic to demonstrate concept only. In a production environment you would seek to optimize, to the best of your ability, the performance of your queries.
The first thing to do is read through the ‘Getting Started Developing on the ICDB 2.0 Platform’ and complete the ‘Instructions for Installing and Configuring the ICDB 2.0 Development Environment in Visual Studio .Net 2003.’ The rest of this tutorial assumes that the installation is complete and begins where the installation instructions end.

The functionality of this module provides a list of patients that have an appointment with the provider that day. We will assume that this functionality is only available for providers. Let’s take a look at a mockup of the final display:
[image: image18.png]
In the user’s display, the patients scheduled for appointments with the user will be listed sorted by the time of their appointment, from first to last. For each scheduled appointment, the time of the appointment, the name of the patient, age, type of appointment, reason of appointment and patient’s assigned PCM will be shown.
Acquiring the Right Patients from the Database:
The data of concern is already in the ICDB so we will have to retrieve that data in the form prescribed. We will need to determine who in the ICDB has an appointment with the user for that day. Once the patients are identified, we need to retrieve the information related to the appointment and the patient. With a review of the business logic and an evaluation of the ICDB Data Dictionary, we can determine how to identify the patients and define the business rules.

The schedule for CHCS is found in the CHCS_APPOINTMENT table. The appointments themselves all have certain status information associated with them and are also categorized into multiple types. The information related to the status and type are found in the CHCS_APPOINTMENT_STATUS and CHCS_APPOINTMENT_TYPE tables respectively. Let’s derive the business logic for determining what makes an appointment for your user.
First, the three tables can be related to each other. The CHCS_APPOINTMENT is related to the CHCS_APPOINTMENT_STATUS via the APPOINTMENT_STATUS_ID field. The CHCS_APPOINTMENT and CHCS_APPOINTMENT_TYPE tables are related via the APPOINTMENT_TYPE_ID field. We also know that we want to return only those appointments that belong to our user and for today’s date. Since CHCS sometimes has some peculiar data and the ICDB reflects these peculiarities very accurately, we need to make sure that none of the type id’s are 0. We also need to be sure that none of the appointments we return are considered cancelled, or having an appointment ID of 3. The resulting from & where clause ought to do it:
 FROM icdb.CHCS_APPOINTMENT APPT,
 icdb.CHCS_APPOINTMENT_STATUS APPTSTAT,
 icdb.CHCS_APPOINTMENT_TYPE APPTTYPE,
 icdb.CHCS_PATIENT PATIENT
 WHERE APPT.APPOINTMENT_STATUS_ID = APPTSTAT.APPOINTMENT_STATUS_ID
 AND APPT.APPOINTMENT_TYPE_ID = APPTTYPE.APPOINTMENT_TYPE_ID
 AND APPT.PATIENT_ID = PATIENT.PATIENT_ID
 AND APPT.PROVIDER_ID = 18240
 AND ((APPT.APPOINTMENT_DATETIME > trunc(to_date('01052003', 'DD-MM-YYYY')))
 AND (APPT.APPOINTMENT_DATETIME < trunc(to_date('31052003', 'DD-MM-YYYY'))))
 AND APPT.APPOINTMENT_STATUS_ID <> 3
 AND APPT.APPOINTMENT_TYPE_ID <> 0
For the actual data itself that we need to return for display, we need to pull data from the CHCS_PATIENT table to get the demographic data related to the patient scheduled for the appointment. We need the patient’s name, age, phone and PCM the patient is assigned to. For data regarding the appointment itself, we need to pull data from the CHCS_APPOINTMENT_TYPE table as well as data from the CHCS_APPOINTMENT table itself. The resulting select statement should suffice:
 SELECT TO_CHAR(APPT.APPOINTMENT_DATETIME, 'hh24:mi') AS APPOINTMENT_TIME,
 PATIENT.PATIENT_NAME AS PATIENT_NAME,
 PATIENT.PATIENT_NOK_PHONE AS PATIENT_NOK_PHONE,
 trunc((SYSDATE-PATIENT.patient_dob)/365) P_AGE,
 APPTTYPE.APPOINTMENT_TYPE_NAME AS APPOINTMENT_TYPE_NAME,
 APPT.APPOINTMENT_REASON AS APPOINTMENT_REASON,
 CLIN_APPS.GetProviderName(PATIENT.PATIENT_ID) Provider_Name

I am going to cheat and call an already existing function in CLIN_APPS called GetProviderName that will return a given patient’s PCM. We do this frequently in the ICDB program office since traversing the joins in real time is costly. Lastly, we can sort this prior to returning it to the requesting application:

 ORDER BY APPOINTMENT_DATETIME;

The complete SQL needs to be placed in a PL/SQL package. We will call our package ICDB_TUTORIAL_PKG. There is one PL/SQL procedure and we will call it GET_USER_SCHEDULE. So the final Oracle package definition including body should look like this:
create or replace package ICDB_TUTORIAL_PKG is

 -- Public type declarations
 TYPE rc_icdbschedules IS REF CURSOR;

 -- Public function and procedure declarations
 PROCEDURE GET_USER_SCHEDULE(PROVID IN icdb.CHCS_APPOINTMENT.PROVIDER_ID%TYPE, rcMYSCHEDULE out rc_icdbschedules);

end ICDB_TUTORIAL_PKG;
create or replace package body ICDB_TUTORIAL_PKG is

 -- Function and procedure implementations
 PROCEDURE GET_USER_SCHEDULE(PROVID IN icdb.CHCS_APPOINTMENT.PROVIDER_ID%TYPE, rcMYSCHEDULE out rc_icdbschedules) is
 begin
 IF NOT rcMYSCHEDULE%ISOPEN
 THEN
 OPEN rcMYSCHEDULE FOR
 SELECT TO_CHAR(APPT.APPOINTMENT_DATETIME, 'hh24:mi') AS APPOINTMENT_TIME,
 PATIENT.PATIENT_NAME AS PATIENT_NAME,
 PATIENT.PATIENT_NOK_PHONE AS PATIENT_NOK_PHONE,
 trunc((SYSDATE-PATIENT.patient_dob)/365) P_AGE,
 APPTTYPE.APPOINTMENT_TYPE_NAME AS APPOINTMENT_TYPE_NAME,
 APPT.APPOINTMENT_REASON AS APPOINTMENT_REASON,
 CLIN_APPS.GetProviderName(PATIENT.PATIENT_ID) Provider_Name
 FROM icdb.CHCS_APPOINTMENT APPT,
 icdb.CHCS_APPOINTMENT_STATUS APPTSTAT,
 icdb.CHCS_APPOINTMENT_TYPE APPTTYPE,
 icdb.CHCS_PATIENT PATIENT
 WHERE APPT.APPOINTMENT_STATUS_ID = APPTSTAT.APPOINTMENT_STATUS_ID
 AND APPT.APPOINTMENT_TYPE_ID = APPTTYPE.APPOINTMENT_TYPE_ID
 AND APPT.PATIENT_ID = PATIENT.PATIENT_ID
 AND APPT.PROVIDER_ID = 18240
 AND ((APPT.APPOINTMENT_DATETIME > trunc(to_date('01052003', 'DD-MM-YYYY')))
 AND (APPT.APPOINTMENT_DATETIME < trunc(to_date('31052003', 'DD-MM-YYYY'))))
 AND APPT.APPOINTMENT_STATUS_ID <> 3
 AND APPT.APPOINTMENT_TYPE_ID <> 0
 ORDER BY APPOINTMENT_DATETIME;
 END IF;
 end GET_USER_SCHEDULE;

end ICDB_TUTORIAL_PKG;
Creating the user’s web form:

Let’s return to the mockup of the final display:

[image: image2.png]
It’s simple and gets the point across. The basic components required are:

1. A grid composed of 7 columns for information related to each appointment
a. Time - Appointment time

b. Patient Name – Patient’s name

c. Phone – Patient’s phone number
d. Age – Patient’s age

e. Type – The type of the appointment
f. Reason – The reason for the appointment

g. PCM – The PCM assigned to the patient
.Net provides some prefabricated classes to assist us with the development. In particular, we are going to use a DataGrid to complete all the requirements of our display. Let’s get into Visual Studio and get started.

Open up the project created in the ‘Instructions for Installing and Configuring the ICDB 2.0 Development Environment in Visual Studio .Net 2003.’ For the tutorial this is called ‘My Schedule.’
	Developing -

	Step 1: Open the MySchedule.ascx file from ‘Solution Explorer’ in design view. Just double click it for default Visual Studio configurations.
	[image: image3.jpg]

	Step 2: Let’s drag a datagrid object onto the designer to put our data in. If your page is in flow layout, the grid will be placed in the upper left hand corner. If you are in grid layout, it will remain where you place it.
	[image: image4.jpg][image: image17.png]

	Step 3: Your designer should look like this. At this point, if you want to spruce up the default format of the DataGrid such as colors or fonts, feel free to change the DataGrid style with the ‘Auto Format’ link found under the ‘properties’ window on the right.
	[image: image5.jpg]

	Step 4: Let’s rename the DataGrid in the properties window to something that is more intuitive when viewed in our code, something like MyScheduleGrid. With the DataGrid selected in the designer, type in the new name in the (ID) field in ‘Properties’
	[image: image6.jpg]

	Step 5: Now let’s take a look at the code behind. The fastest way to do this is to hit ‘F7’ to switch to ‘code view.’ You can also right-click on the ‘MySchedule.ascx’ file in the solution explorer and select ‘ View Code.’ You should now see something like this. Notice the new DataGrid has been added for you.
	[image: image7.jpg]

	Step 6: Let’s code our module. We will have the portal call the stored procedure to grab the data from the database. Once we have the data, we will place the data in a dataset and then bind the dataset to our datagrid. Once we do this, the control will display the resulting data.

To get the data from the database we have to instantiate an instance of the ICDBDatabase class so we can call our stored procedure we created earlier. In the Page_Load() method of the ICDBUserControl, place the code as shown:

private void Page_Load(object sender, System.EventArgs e)

{

ICDBDatabase iDB = new ICDBDatabase(ICDBUser.AuthICDBUserID());

iDB.Parameters.Add(new DBParameter("PROVID", OracleType.Number, direction.input, GetUserProvID()));

iDB.Parameters.Add(new DBParameter("rcMYSCHEDULE", OracleType.Cursor, direction.output));

iDB.Execute("CLIN_ADMIN.ICDB_TUTORIAL_PKG.GET_USER_SCHEDULE");

}
The first statement instantiates the iDB object to the ICDBDatabase class. This is done by passing in the user’s ICDB user ID. We get the ICDB user ID by making a call to a static method found in the ICDBUser class, a class that defines the properties and methods used to deal with the user in the portal. With the returned ICDB user ID, the constructor creates the ICDBDatabase object and instantiates to iDB.
The second and third statements sets up the parameters for the stored procedure call to Oracle. We call the Add() method of the ICDBDatabase.Parameter property. With Parameter being a property of type ArrayList, it inherits the method Add() which allows you to add items to the ArrayList. In our case, we need to add a parameter that defines the stored procedure parameter. To describe a stored procedure parameter, you have to define 4 values:

For the PROVID parameter, the specification looks like this:
1. Parameter Name – This is the name of the parameter as it is defined in the Oracle stored procedure itself. In our example, we have called it ‘PROVID’

2. Parameter Type – This is the type of the parameter as it is defined in the Oracle stored procedure. For the input parameter describing the user’s Provider ID, the type is NUMBER. The enumeration for the Oracle data types comes directly from the System.Data.OracleClient assembly, Microsoft’s Oracle Data Provider. The type defined here must be one of the enumerations defined in the MS Oracle Data Provider.

3. Parameter Direction – This describes the direction of the parameter per se. If the parameter is passing information into the stored procedure, then the direction is ‘input.’ If the parameter is passing information out, the direction is ‘output.’ The enumeration for the direction is defined in DBParameter class. For the PROVID parameter, the type is input.
4. Parameter Value – This is the value of the parameter. If the parameter is of type input, then the actual value to be passed in would be provided in the Parameter.Add(). If the parameter is of type output, then no assignment is made and the returning data is actually placed in the value upon the return of the call. For the PROVID parameter, we need to pass the user’s provider ID to the stored procedure. Fortunately for us, there is a method defined in the ICDBUserControl that will return the user’s provider ID. This method is GetUserProvID().

For the rcMYSCHEDULE parameter specification, it looks like this:
5. Parameter Name – For the rcMYSCHEDULE paramter, we have called it ‘rcMYSCHEDULE’

6. Parameter Type – This parameter is a Cursor type.

7. Parameter Direction – The parameter is of type ‘output’

8. Parameter Value – The parameter is ‘output’ so no value needs to be assigned.

The fourth statement actually makes the call to the database stored procedure. Now that the parameters are loaded, calling the execute() method of the ICDBDatabase object iDB makes the connection to the ICDB database and executes the stored procedure. The returning data is then loaded into the values of the parameters where appropriate, awaiting our retrieval. The parameter for the Execute() method is the name of the actual stored procedure itself. This name should be pre-qualified by the name of the schema, the name of the package and the name of the stored procedure. In the example shown, this is the CLIN_ADMIN schema, the ICDB_TUTORIAL_PKG package and the GET_USER_SCHEDULE procedure. You should customize this for your particular environment and schema. The Execute() method returns a Boolean value to indicate the success of the call. You should always check the method’s success and react accordingly. Normally you can capture this in an ‘if…then’ clause. We’ll get to the final code in just a minute.
Now that the data has returned, we need to retrieve it from the iDB object. To do this, we will use the provided ReturnValue() method of the ICDBDatabase class:

DataSet _dsMySchedule = new DataSet();

_dsMySchedule = (DataSet)iDB.ReturnValue("rcMYSCHEDULE");

In the first statement, a dataset is created to hold the returning data. Upon creation in the second statement we assign the return value of the Parameter “rcMYSCHEDULE” to the dataset. Values are stored in the ICDBDatabase.Parameter arraylist as type object so needs to be cast upon return. Most data being returned from the Oracle stored procedure will be returned as a type dataset although efforts are underway to provide the ability to return an XML document as well. Now that the dataset is populated we can move on to displaying it in the MyScheduleGrid DataGrid.

In .Net, DataGrids and DataSets work hand in hand. We now only require a few more lines to setup the MyScheduleGrid DataGrid to display the dataset returned from our data call. Upon a successful data call to the Execute() method, let’s place the following two lines to establish that the _dsMySchedule dataset is the data source for the MyScheduleGrid DataGrid and then bind it:

MyScheduleGrid.DataSource=_dsMySchedule;

MyScheduleGrid.DataBind();
The resulting code for Page_Load looks like this now:

private void Page_Load(object sender, System.EventArgs e)

{

// instantiate an ICDBDatabase object

ICDBDatabase iDB = new ICDBDatabase(ICDBUser.AuthICDBUserID());

iDB.Parameters.Add(new DBParameter("PROVID", OracleType.Number, direction.input, GetUserProvID()));

iDB.Parameters.Add(new DBParameter("rcMYSCHEDULE", OracleType.Cursor, direction.output));

if(iDB.Execute("CLIN_ADMIN.ICDB_TUTORIAL_PKG.GET_USER_SCHEDULE"))

{

DataSet _dsMySchedule = new DataSet();

_dsMySchedule = (DataSet)iDB.ReturnValue("rcMYSCHEDULE");

MyScheduleGrid.DataSource=_dsMySchedule;

MyScheduleGrid.DataBind();

}

else

{

HttpContext.Current.Session["Exception"] = "ERROR in (OurPanelView1.Page_Load)";

}

}

The error that you place in the session variable “Exception” is up to you.
Now that we have completed the code, we are almost ready to give it a spin.

	Step 7: Because our functionality relies on the user to have a provider ID, we need to make sure that a user is in the ICDB database that is configured to have a provider ID that will return some data. The table in ICDB that contains user information is the ICDB_USER table. To setup a user that will return some data, using your favorite database editor, create a user with at least an ICDB_USERID and CHCS_PROVIDERID. You can fill in the rest information if you like but those two pieces of data are required for our example. Remember the ICDB_USERID because you have to provide it when the test application runs. Once this test user is established, let’s give it a run.

	Step 8: Go ahead and build your project with CTRL+SHFT+B or hit the F11 button to build and run. Enter the ICDB_USERID of the test user you created in step 7. My example used 1234. Click the ‘Set ICDB User ID’ button.
	[image: image8.jpg]

	Step 9: Type in the location and name of your user control. If you have followed the instructions, the location is your folder that you created under the ‘Modules’ folder and the name of the file minus the ‘.ascx’
	[image: image9.jpg]

	Depending on whether you formatted your data grid in step 3 or not, your display may look different. I changed the default color, font and font size. Notice the header names are coming from the database. Let’s clean this up. Close your browser window.
	[image: image10.jpg]

	Step 10: In the design view of the user control, select the datagrid. Under the ‘properties’ window, find the ‘Property Builder’ link and select it.
	[image: image11.jpg]

	Step 11: The ‘MyScheduleGrid’ properties dialog box should pop up. Select the ‘columns’ attribute on the left and remove the ‘Create columns automatically at run time’ check box.
	[image: image12.jpg]

	Step 12: Next, we need to create 7 columns for the 7 pieces of information we wish to display. With ‘Bound Column’ selected under the ‘Available Columns’ area click the Add button ‘>’ 7 times.
	[image: image13.jpg]

	Step 13: We need to configure each column. For all the columns, we will set their properties. Starting with the first column, set the ‘Header text:’ to Time. Then set the ‘Data Field:’ to APPOINTMENT_TIME. The header text is the text to be displayed at the top of the column in the datagrid and the Data Field is the field in the dataset to bind this column to. In our case, the field names come from the returning REF CURSOR from Oracle.
	[image: image14.jpg]

	Step 14: Finish the rest of the columns with the appropriate text and bind them to the right data columns.
	Column

Header Text

Data Field

Appointment Time

Time

APPOINTMENT_TIME

Patient Name

Name

PATIENT_NAME

Patient Phone

Phone

PATIENT_NOK_PHONE

 Patient Age

Age

P_AGE

Appointment Type

Type

APPOINTMENT_TYPE_NAME

Appointment Reason

Reason

APPOINTMENT_REASON

Patient PCM

PCM

Provider_Name

	Much better!
	[image: image15.jpg]

	At this point in time, I think you get the picture. You should know how to step through a simple clinical example and create a simple functionality module in the new ICDB 2.0 portal framework. In our next example, we will discuss a more complicated functionality and discuss the implications of submitting your module for production in the ICDB system.

[image: image16.png]
