Integrated Clinical Database 2.0

[image: image19.png]Getting Started Developing on the ICDB 2.0 Platform

Where to begin?

To begin developing on the ICDB 2.0 platform, it will be assumed that you have functionality in mind that you would like to see implemented somewhere in the Military’s Enterprise Healthcare System. There are several reasons to develop functionality and a multitude of ways to discover what functionalities will be productive in this new enterprise wide healthcare platform. The ICDB’s Developer’s Network Web Site or http://icdb.tricaresw.af.mil/idn, is a good place to start but again, let us assume you already have something in mind.

There are two primary concerns with developing automated systems for the military health care system. These are how to get the functionality to interact with your intended audience and where to store the resulting data. There are numerous secondary concerns but these two provide the basis for a majority of the technical implementations found in today’s systems. Let’s examine the two issues.

Implementation of an interface with your intended users can take on several forms. In today’s environment two forms are prevalent. These forms are web based and client based. Both methods have their own pros and cons and both meet their objectives successfully. Currently the ICDB has adopted the web based approach due to the restrictive nature of configuration of the end user’s computing resources on base and post networks. While it is realized that more processing has to occur on the server, it has been deemed acceptable faced with the difficulties and risk associated with deploying client applications. Web based development has enjoyed immense popularity due to the commercial adoption of the internet and supporting technologies have come a long way to provide robust and scaleable environments to operate in. ICDB 2.0 has chosen to implement its platform via Microsoft’s .Net technology, specifically ASP.Net. The two primary languages of choice are C# and Visual Basic .Net.
Every functionality requires the ability to store data in a repository. This repository needs to be accessible by either client applications or the web application providing the interface to the user. The nature of the health care repository requires that considerable computing resources be applied to maintain storage, stability and fault tolerance of sensitive information. To that end, the ICDB has designed and implemented ICDB Data Repository Services that provides the ability to store appropriate data and associated access methodologies in the form of packages and procedures. To provide consistent and efficient storage of common health data, the ICDB has begun to standardize its storage with consideration from the health care community and the technical organizations that support it.
For you as a developer, your project will be broken into these two categories: how your functionality will interact with your user and what data your functionality will store. This is where the ICDB has provided tools to assist with making your development easier and even removing some of the issues normally associated with creating automated solutions for the MHS.

Defining Your Interface.

Your interface with the customer comes with a lot of responsibilities. Ensuring the security of the requesting user, placing the data on the screen, accessing the database to gather the data, processing complex business logic, providing consistent and intuitive navigation just to name a few. In ICDB 2.0, we have strived to provide an environment that allows you to focus on developing your functionality, not the infrastructure that presents your functionality to the user. The new 2.0 portal provides a platform on which you can build your functionalities. It provides the security to the web environment. Using ASP.Net, the web files and associated configuration files are protected and as a module of the platform, your files and code is protected without you having to write any code. The navigation portion of the web site has also been totally revamped to capitalize on emerging capabilities of the ASP.Net architecture to provide an environment that is consistent throughout the enterprise yet flexible enough to customize for local environments and even for individual users. This flexibility also comes with the ability to secure functionality based on user roles.
To develop in the portal platform requires development in the ASP.Net foundation. Your functionality must be contained within an ASP.Net User Control. The development can be either inline or utilizing code behind and compiled into your own assembly. Once your functionality is complete, it is easy to plug this into the ICDB 2.0 system.

Access to the database also becomes easier through the use of a common database access component. This access component enforces security and provides self managed connection operations to call on. With the data access component, you can call your stored procedures with a single call.

The ICDB Portal for 2.0.

The portal for 2.0 has been revamped to provide a consistent and predefined interface for the end ICDB user. The portal is broken into several components as described below.

[image: image1.png]
Status Bar – Provides status information to the end user through text and images. Provides the user with their user name and allows them to review the roles they belong to. Also provides an area where system images can be used to indicate activity such as new alerts, new messages, errors in the application, etc.

Nav Bar – Provides the user with a quick navigation element similar to Microsoft Outlook’s. The nav bar is pre-populated with several system elements such as a favorites for the top functionalities the user navigates to and utilities like the patient search function. The nav bar is also where functionality in the portal can customize navigation elements as they see fit.

Menu Bar – Provides the user with a consistent method to navigate to functional components or ‘views.’ The menu is dynamic and built according to which roles the user belongs to. Enterprise rules can also influence what functional items populate a given user’s menu bar. The complete menu bar will be maintained under a configuration board to keep its consistency throughout the enterprise. Regardless of where a user logs into the ICDB, the menu will look relatively the same and the user can find functional ‘views’ under the same menu items.

Portal ‘View’ – This is the area where the functionality will be displayed. For developers, this is where your user control will be placed.

[image: image20.png][image: image21.png][image: image22.png]When the user logs in, their portal is built dynamically based on the user’s profile and roles.

The functionality you create as a developer will be loaded into the ‘view’ area. This is implemented by the portal automatically based on the user’s selection of the functionality in the menu.

When submitting your functionality, you will be requested to define where in the menu bar your functionality should reside. The main menu items or ‘root’ menus will be predetermined by the configuration board and will be general in nature. Your functionality will be placed in one of the ‘root’ menu items or a sub menu item off of the root. By clicking on your menu item, the user’s portal refreshes and your user control housing your functionality will be loaded into the viewing area.

The functionality’s menu option will only show up in the user’s menu bar if they belong to the roles designated as having access to that functionality. When you submit your functional components, you will also be asked what ICDB roles will have access to the functionality. This meta-data describing the access will be loaded into the ICDB Portal so that the menu bar can be populated correctly for the right users.
Presentation of Data in a User Control.

Developing the presentation portion of your functionality is relatively straight forward. Numerous text and resources exist providing solid background in ASP.Net programming. The rule of thumb is to develop your functionality in a user control and derive your user control from the ICDBUserControl base class. This base class provides the properties and methods to interact with the ICDB portal platform. Removing the members associated with the inheritance from the .Net User Control base class, the ICDB 2.0 class looks like this:
Public Instance Constructors

	[image: image2]ICDBUserControl Constructor
	Initializes a new instance of the ICDBUserControl class.

Public Instance Properties

	[image: image3]Param
	Gets or sets the property Param which is of object type used to pass ICDBUserControl defined parameters between other controls and the platform

	[image: image4]Title
	Gets or sets the property Title which is the title of the ICDBUserControl

Public Instance Events

	[image: image5]ControlEvent
	Event fired from control to interface with ICDB portal

Protected Instance Methods

	[image: image6]OnControlEvent
	Method used by control to fire an event to interface with portal

The ‘param’ property is used to pass data from one calling view to another through the user control object. The ‘Title’ property is used to display the user control’s title bar correctly in the ICDB Portal. The ‘ControlEvent’ is a method by which the user control can fire an event to have the parent page respond to. By inheriting and using the members of the ICDBUserControl class, developers can focus on delivering functionality and utilizing predefined logic to display and communicate within the portal.

Data Access in the ICDB Portal.

For accessing the data in the ICDB database, a common database access component is being provided for functionality developers. This is a single class designed to provide all the necessary methods to access the Oracle database. Simply instantiate the object, set its properties and call the Execute() method to retrieve your data. Here’s a look at the ICDBDatabase component:

Public Instance Constructors

	[image: image7]ICDBDatabase
	Overloaded. Initializes a new instance of the ICDBDatabase class. The constructor requires the user’s ICDB user ID for authenticating and auditing the database request.

Public Instance Properties

	[image: image8]ICDBUserID
	This property is the user's ICDB ID used to audit data access and represent current authenticated access

	[image: image9]Parameters
	This property is an arraylist that contains a list of parameters to be sent to the Oracle stored procedure

Public Instance Methods

	[image: image10]Clear
	This method clears all the ICDBDatabase object properties except the ICDB User ID so the ICDBDatabase object can be used again.

	[image: image11]Equals (inherited from Object)
	Determines whether the specified Object is equal to the current Object.

	[image: image12]Execute
	The primary ICDB database stored procedure access method that provides a standard Data Access Layer for calling business object components. The ICDBDatabase object must be instantiated with the correct properties before proceeding with this method call. This method requires the Oracle stored procedure’s name as its only input parameter.

	[image: image13]GetHashCode (inherited from Object)
	Serves as a hash function for a particular type, suitable for use in hashing algorithms and data structures like a hash table.

	[image: image14]GetType (inherited from Object)
	Gets the Type of the current instance.

	[image: image15]ReturnValue
	This method takes the Oracle parameter name of the desired DBParameter and returns the DBParameter's value as an object.

	[image: image16]ToString (inherited from Object)
	Returns a String that represents the current Object.

Protected Instance Methods

	[image: image17]Finalize (inherited from Object)
	Allows an Object to attempt to free resources and perform other cleanup operations before the Object is reclaimed by garbage collection.

	[image: image18]MemberwiseClone (inherited from Object)
	Creates a shallow copy of the current Object.

The normal process for connecting and retrieving data from the database is through the use of the ICDBDatabase class. To begin, instantiate an object using the ICDBDatabase class. The ICDBDatabase constructor requires the user’s ICDB user ID for authentication and auditing purposes. The best method of getting this ID is by calling the AuthICDBUserID method from the ICDBUser class. This method returns the user’s ICDB user ID from the .Net authentication ticket. Here’s an example that calls a fictitious stored procedure called ‘CLIN_ADMIN.SYSTEM.GETUSERS’:

ICDBDatabase iDB = new ICDBDatabase(ICDBUser.AuthICDBUserID(),dataserver.clinadmin);

iDB.Parameters.Add(new DBParameter("USERS", OracleType.Cursor, direction.output));

iDB.Execute("CLIN_ADMIN.SYSTEM.GETUSERS")
The developer instantiates a new object ‘iDB’ of the class ICDBDatabase by passing in a call to the ICDBUser.AuthICDBUserID() method. This example call uses the overloaded version of the ICDBDatabase connector that specifies which account in Oracle to make the call, clinadmin. The second line adds a parameter that duplicates the signature in the stored procedure, in this case an output parameter that returns an Oracle REF CURSOR. The Execute() method is then called to complete the request. In the following code sample, the data is extracted using the ReturnValue() method:

DataSet _dsUsers = new DataSet();

_dsUsers = (DataSet)iDB.ReturnValue("USERS");
Now that the Execute() method has been called, the data is now located in the parameter. The ReturnValue() method extracts the value stored in the passed parameter name, in this case ‘USERS’. The value is returned as an object allowing you to cast to the appropriate data type you as a developer expect. In our example, this is cast to a dataset. From this point, the presentation can perform other business logic against the data or present it appropriately on the web form.

Notice that security and database connection management is handled by the ICDBDatabase component.

Defining Your Data Requirements.
For storing your data elements, once the items are defined, check with the ICDB Program Office and the associated ICDB 2.0 Data Dictionary to determine whether the data you plan to store is already being captured in the ICDB. If it is, then we highly encourage the use of the existing data storage tables due to the attempt to be consistent across the MHS. If your data is not already managed and maintained in the ICDB, then we’ll work together to identify the data and create the necessary storage repositories to handle your data.

What data you access will be up to you. Usually this is defined in a set of SQL stored procedures in the database environment. This SQL code, once completed, will be submitted and placed in a predefined area in the database environment for you. With the appropriate package and procedure names, once placed in the Oracle environment, the stored procedure can be called via the Execute() method described above.
Frequently Asked Questions (FAQ)

Q:
How do I authenticate a user in my module?

A:
You do not need to. In the new ICDB 2.0 portal, authentication of users is handled by the framework itself. Users cannot be implementing your module or functionality without already being authenticated in the ICDB 2.0 portal itself. Your module can call upon several methods defined in the ICDBUserControl base class that will return the user’s profile information for your use.

Q:
How do I access data from the database?

A:
Through the instantiation of the ICDBDatabase class. In your module or business object, instantiate an object passing in the user’s ICDB user ID. Then setup the parameters in the ICDBDatabase.Parameter property. Then call the ICDBDatabase.Execute method passing in the name of the stored procedure to call. The returning data is placed in the ICDBDatabase.Parameters you specified and can be returned by calling the ICDBDatabase.ReturnValue method, passing in the name of the parameter that returned the data.
Final views and functionality created for user interaction

Navigation menu and functional access dynamically generated based on profile & roles

Service:

Air Force

Location:

WHMC

Role:

Provider

User profile loaded

User logs in

